
SKM-Toolbox Manual

July 10, 2012

Contents

1 Background 2

2 Example scripts 2

3 Function overview 2

4 Installation 2

5 Getting started 4
5.1 Mandatory input arguments for the skm-function . 4
5.2 Example . 4
5.3 Output arguments of the skm-function . 5

6 Specifying toolbox options and manipulating model parameters 7
6.1 Optional input arguments for the skm-function . 7
6.2 Automatic creation of a paramIntervals-struct . 9
6.3 When do I need to specify a paramIntervals-input argument? 10
6.4 What if I only want to specify some parameters while the rest should be derived automat-

ically? . 10
6.5 Example . 10
6.6 Including allosteric regulators at random positions . 11

7 Working with the results 12
7.1 Plotting the results . 12
7.2 Pairwise comparison of the parameters . 12
7.3 Example . 12
7.4 Creating training data for the C4.5 or C5.0 algorithm for decision trees 12
7.5 Obtaining further information from the eigenvalues . 14

A Function documentation in detail 15
A.1 Analysis functions . 16

A.1.1 skm . 16
A.2 Information and editing functions . 17

A.2.1 skm assignRandomRegulators . 17
A.2.2 skm countStableModels . 17
A.2.3 skm createClassifierInput . 18
A.2.4 skm createOptionsStruct . 18
A.2.5 skm createParamStruct . 19
A.2.6 skm pairwiseTests . 19
A.2.7 skm plotParams . 20
A.2.8 skm readSBML . 20

1

1 Background

This manual describes the MATLAB toolbox for structural kinetic modeling (SKM) published by Girbig
et al (2012b). The principles of structural kinetic modeling are covered elsewhere (Steuer et al , 2006;
Steuer, 2011) and will not be repeated here in detail.

SKM enables the investigation of dynamical properties of metabolic systems in steady states. When
used within a Monte-Carlo framework, it enables the derivation of this information solely based on the
structure of the network (given by the stoichiometric matrix N), the steady state concentrations S0 and
the fluxes v0.

The presented toolbox offers a framework that facilitates the creation and evaluation of structural
kinetic models (SK-models). The minimal input necessary to start the program consists of N, S0 and
v0. Model parameters and their sampling intervals can be derived automatically from the information
contained in N. Further settings can be specified by additional input arguments. For example, the
manual modification of sampling intervals or the specification of regulatory interactions is performed via
an optional input argument.

Details about the SK-model building process, as well as the input and output arguments of the
program are explained in section 5.

2 Example scripts

We illustrate the model building and analysis process on three example scripts. These scripts demonstrate
how to implement published SK-models using the toolbox:

1. Simplified glycolysis model of Steuer et al (2006)

2. Simplified Calvin-Benson cycle model of Steuer et al (2006)

3. Detailed Calvin-Benson cycle model of Girbig et al (2012a)

3 Function overview

Like Schmidt and Jirstrand (2006), we divide our toolbox functions into three categories: analysis func-
tions, information and editing functions and auxiliary functions.

1. Analysis functions are the main functions for creating and analyzing SK-models via Monte-Carlo
simulation.

2. Information and editing functions are functions that help generating input arguments for the
analysis functions and to retrieve and process results.

3. Auxiliary functions are support functions for internal use within the toolbox only. They are
indicated by the preamble subFct. In general, the user is not encouraged to run or modify any
auxiliary function manually.

Functions in the first two categories can be invoked directly by the user. Table 1 provides a brief
overview of these functions. A detailed description of all functions (except of the auxiliary functions) is
given in Appendix A.

4 Installation

The Toolbox requires that MATLAB is already installed on your computer. Basic MATLAB skills are
required in order to be able to correctly use the program.

1. Download the .zip - file and unpack in your folder of choice (for example, C:\SKM-Toolbox)

2. Start MATLAB

(a) In order to run the toolbox, make sure that your local path in which you are operating
corresponds to the folder containing the skm-function.

(b) Alternatively, you can also set a a global MATLAB path to this folder (File -> Set Path...).
We recommend this option because it enables you to access the toolbox from arbitrary locations
on your disk.

2

3. Open the script ’ExampleScript Steuer2006 Glycolysis.m’. It demonstrates the process of
model building and evaluation on a simple model of the glycolysis pathway taken from the lit-
erature (Steuer et al , 2006). Go through this script step by step. Further explanations about the
individual steps can be found in the Toolbox-Manual (PDF included the downloaded .zip - file).

4. After getting acquainted with the basic concepts, try the more complex models provided in example
the following example scripts:

• ’ExampleScript Steuer2006 CalvinCycle’: moderately complex literature model (Steuer
et al , 2006),

• ’ExampleScript Girbig2012 CalvinCycle’: highly complex literature model (Girbig et al ,
2012a), provided in a separate subfolder within the .zip - file together with some assisting
functions.

Function Name Description

1. Analysis functions

skm

Main function of the SKM-toolbox. Creates SK-models, performs Monte-Carlo
simulations and plots the distributions of the resulting eigenvalues and model
parameters.

2. Information and editing functions

skm assignRandomRegulators

Assistant function to modify the struct defining sampling intervals for the
model parameters by including allosteric regulation at random positions. This
struct then serves as an input argument for the skm-function.

skm countStableModels

Quantitative evaluation of the number of stable and unstable models. Com-
putes absolute numbers and percentages. Returns estimates and standard de-
viations.

skm createClassifierInput
Create training data for the C4.5 classifier for decision trees. Optionally, input
for the proprietory C5.0 classifier can be created instead of C4.5.

skm createOptionsStruct
Creates a template for a struct containing the settings for the skm-routine. This
struct then serves as an input argument for the skm-function.

skm createParamStruct
Creates a template for a struct defining the sampling intervals for the model
parameters. This struct then serves as an input argument for the skm-function.

skm pairwiseTests
Pairwise comparison between the model parameters responsible for stable and
unstable models. Uses the Kolmogorov-Smirnov test.

skm plotParams
Plotting the distributions of model parameters and resulting eigenvalues for
stable and unstable models.

skm readSBML

Reads an SBML file and extracts the information about metabolite and reac-
tions names, as well as the corresponding stoichiometric matrix for use in the
toolbox.

Table 1: Matlab functions for creating and evaluating SK-models by the SKM-toolbox.

3

5 Getting started

The skm function is the main toolbox element for SK-model building and analysis. This section describes
its usage, specifically the creation of its input arguments and the handling of its output for further
analysis.

5.1 Mandatory input arguments for the skm-function

Three input arguments are required for the skm function: the stoichiometric matrix N, the steady
state concentrations S0, and the steady states fluxes v0. For example, the command

skm(N, S0, v0)

produces 104 SK-models in which the numbers and positions of the model parameters are derived au-
tomatically from the stoichiometric matrix (negative entries = substrates, positive entries = products).
In this (default) case, the model parameters are assumed to represent substrate effects of irreversible
enzymatic reactions. Consequently, they are sampled independently from the interval [0, 1] (Steuer et al ,
2006).

An overview of the three mandatory program input arguments for the skm-function is shown in Table
2. All three input arguments N, S0, v0 must be MATLAB matrices. S0 and v0 each contain a single
column or row (columns or rows are both possible because they will be transposed by the program into
the right format). The number of rows in N equals the length of S0, its number of columns equals the
length of v0.

input argument explanation format

N Stoichiometric matrix Matrix with m rows and r columns

S0 Steady state concentrations Row or column vector of length m

v0 Steady state fluxes Row or column vector of length r

Table 2: Mandatory input arguments for the function skm

5.2 Example

The SK-model of a simplified glycolysis pathway in Steuer et al (2006) is represented by the following
MATLAB matrices:

N S0 v0



1 −1 0 0 0 0 0 0

0 2 −1 0 0 0 −1 0

0 0 1 −1 0 0 0 0

0 0 0 1 −1 −1 0 0

−2 0 0 2 0 0 0 −1

0 0 1 0 −1 0 −1 0

0 0 −1 0 1 0 1 0

2 0 0 −2 0 0 0 1





5.1

0.12

0.0001

1.48

2.1

0.33

0.67

1.9





50

50

80

80

60

20

20

60



(1)

The function call

eigenvalues = skm(N, S0, v0);

starts a Monte-Carlo simulation sampling 12 substrate parameters (one parameter per negative entry in
N) and reports the results in a message similar to the following:

4

Automatically detecting dependencies between metabolites.

Maximum concentration change in the steady state: max(abs(dS/dt)) = 0.00e+000

Number of sampled model parameters: 12

Iterations: 10000

Results:

Percentage of stable models (max_eig < 2.22e-016): 53.24 +- 2.07 %

Percentage of unstable models (max_eig > 2.22e-016): 46.76 +- 1.20 %

Percentage of unclear models (|max_eig| <= 2.22e-016): 0.00 +- 0.00 %

Elapsed time: 2.01 seconds

Line 1 says that during the preprocessing stage, linear dependencies between the rows of the stoi-
chiometric matrix were detected automatically (see Section 6.1 for instructions how to define dependen-
cies manually). In the given network for example, such dependencies exist between the rows 5 and 8
(ATP/ADP), as well as 6 and 7 (NADH/NAD).

Line 2 shows the maximum absolute concentration chances actually occurring for the given stoichiom-
etry and data. Concentration changes are computed by the formula dS

dt |S=S0 = N · v0.

Lines 3 and 4 indicate that 104 runs of the Monte-Carlo simulation have been performed, sampling
12 model parameters in each run.

The results show that using only substrate parameters representing irreversible kinetics leads to stable
models in about 53% of all cases. In general, an SK-model is stable if the largest real part of the eigenvalues
is negative. To avoid numerical inaccuracies, we use the MATLAB precision measure eps as a threshold
to detect values larger or smaller than zero. The standard deviation is computed by partitioning the set
of 104 SK-models into ten equally sized groups which are evaluated separately. The elapsed time since
start of the simulation is shown as well.

In the given example, the skm -function returns only one output argument, namely the eigenvalues for
each of the 104 models. To obtain further information, we can specify several other return values. The
complete list of possible output values is explained in the following section.

5.3 Output arguments of the skm-function

The skm-function returns up to six output arguments. The full function call which returns all output
arguments looks as follows:

[eigenvalues, stability, modelParam_values, modelParam_names, used_options, used_paramIntervals]

= skm(N, S0, v0)

Output argument 1: eigenvalues A MATLAB matrix containing the eigenvalues of the Jacobian
matrix for each SK-model. The eigenvalues are stored row-wise.

Output argument 2: stability A vector indicating the stability of each SK-model. An SK-model
is stable if the largest real part of the eigenvalues is negative. Stable models are indicated by entry
1, unstable models by 0. Models for which the stability could not be derived in this manner (i.e. the
maximum real part equals zero) are indicated by the entry nan.

Output argument 3: modelParam values A struct containing the model parameter values which have
been randomly sampled in each Monte-Carlo iteration. The struct contains fields for substrate parameter
values (Enzyme_Substrates), product parameter values (Enzyme_Products), as well as parameter values
describing regulatory effects (Regulators) or further influences (FurtherParams).

Output argument 4: modelParam names A struct containing the names of all model parameters
which have been randomly sampled in each Monte-Carlo iteration. The struct contains fields for the
names of substrate parameters (Enzyme_Substrates) sampled from interval [0, 1], product parameters
(Enzyme_Products) sampled from interval [−1, 0], as well as parameters describing regulatory effects
(Regulators) or further influences (FurtherParams), both sampled from user-defined intervals. Each
field consists of a cell array which denotes the reaction and the metabolite associated with each parameter
(columns 1 and 2), as well as the type of interaction the parameter represents in the model (column 3).

Output argument 5: used options A struct containing the settings which have been applied by the
algorithm. If the user already specified settings for the skm-function by the optional input argument
options (see section 6.1), used options will be mostly identical to this input argument. However,

5

settings which were not specified beforehand and which got default values assigned instead are also
shown.

Output argument 6: used paramIntervals A struct containing the positions of all model parameters
which have been randomly sampled in each Monte-Carlo iteration. The struct contains fields for substrate
parameters (Enzyme_Substrates) sampled from interval [0, 1], product parameters (Enzyme_Products)
sampled from interval [−1, 0], as well as parameters describing regulatory effects (Regulators) or further
influences (FurtherParams), both sampled from user-defined intervals. If the user manually specified
parameter positions for the skm-function by the optional input argument paramIntervals (see section
6.1), used paramIntervals will be mostly identical to this input argument.

6

6 Specifying toolbox options and manipulating model parame-
ters

6.1 Optional input arguments for the skm-function

Additional optional input arguments allow more detailed specification about how to build and evaluate
the SK-models. For example, the full program input in which all arguments are specified looks as follows:

skm(N, S0, v0, numModels, options, paramIntervals)

Table 3 provides an overview of the optional input arguments and their default values. More detailed
descriptions are given in the text below.

input argument explanation format default value

numModels
Number of SK-models for
Monte-Carlo sampling

integer >= 1 104

options Optional parameters struct
an options-struct with default values in
each field can be created by the function
skm createOptionsStruct

paramIntervals

Information about model pa-
rameters and their sampling
intervals

struct
a paramIntervals-struct with default set-
tings in each field can be created by the
function skm createParamStruct

Table 3: Optional input arguments for the function skm

Optional input 1: numModels The number of SK-models created during Monte-Carlo sampling. For
each model, the parameters are sampled independently from predefined intervals. Default value: 104.

Optional input 2: options A struct with optional parameters for model building and analysis.
Important notes:

• An options-struct with default values in each field can be created by the function skm createOptionsStruct.

• Missing fields will be filled with default values by the skm-function.

• If no options-argument is specified, the default settings are used.

• If the fields m names, r names or m dependent stay empty (the default case), generic names are
assigned to reactions and metabolites, and dependent metabolites are searched automatically by
the skm-function.

The different fields of the options-struct are summarized in Table 4.

Optional input 3: paramIntervals A struct which contains separate matrices indicating the positions
of different types of model parameters (for example, enzyme substrates, enzyme products, regulators and
substrates for mass action kinetics).

The assignment of model parameters and their sampling intervals is the most time-intensive and error-
prone process when constructing SK-models. We facilitate this process by dividing the model parameters
into different categories. Some of these categories use predefined intervals like [0, 1] for enzyme substrates
(derived from the irreversible Michaelis-Menten kinetics, see Steuer et al (2006)) whereas other categories
apply user-defined intervals.

Table 5 summarizes the different parameter categories and explains their meaning. For each category,
the paramIntervals-struct contains a matrix of size r×m, where r is the number reactions and m is the
number of metabolites. This corresponds to the size of the parameter matrix T of an SK-model (Steuer
et al , 2006). Matrix rows represent the network’s reactions and columns represent its metabolites.

A model parameter can be included into the model by inserting a corresponding entry into the matrix
that best describes the parameter’s role in the model. The position of this entry in the matrix depends
on the enzyme-metabolite interaction it refers to.

The following section provides detailed instructions about how to create a paramIntervals-struct
using the function skm createParamStruct.

7

fieldname description possible values
default
value

Options for model structure

m names Metabolite names
cell array of strings, same
length as S0

empty

r names Reaction names
cell array of strings, same
length as v0

empty

m dependent
Metabolites with concentrations linearly dependent on other
metabolites

boolean matrix consisting
of one column or row, same
length as S0

empty

m exclude
Metabolites to be ignored in the SK-model. Do not combine
with field m include!

cell array of strings (names
as in the m names argu-
ment), OR boolean matrix
of same length as S0, OR
vector of indices.

empty

m include

Metabolites to be explicitly included in the SK-model. If
specified, all other metabolites will be ignored. Do not com-
bine with field m exclude!

same as m exclude empty

r exclude
Reactions to be ignored in the SK-model. Do not combine
with field r include!

cell array of strings (names
as in the r names argu-
ment), OR boolean matrix
of same length as v0, OR
vector of indices.

empty

r include

Reactions to be explicitly included in the SK-model. If speci-
fied, all other reactions will be ignored. Do not combine with
field r exclude!

same as r exclude empty

rm zero met Ignore metabolites with concentration = 0 true or false false

rm zero rct Ignore reactions with flux = 0 true or false false

rm zero N
Ignore metabolites and reactions for which the stoichiometric
matrix N has only entries = 0

true or false false

Options for model parameters

kinetics

Type of basic kinetics assumed for each reaction. Used for
the automatic assignment of model parameters to those en-
tries in the struct paramIntervals, which have not already
been specified by the user (see section 6.2 for details).

‘enzymatic irrev’,
‘enzymatic rev’,
‘massAction’

‘enzymatic

irrev’

fct modify params

Handle to a function that performs user-defined post-
processing on the parameter matrix before using it
for computing the Jacobian matrix (see example script
ExampleScript Girbig2012 CalvinCycle).

handle to a func-
tion with syntax
f(T, model indices,

options)

handle
to empty
function

Options for program output

verbose Report status messages in the command window true or false true

plot Plot results (see section 7.2 for details). true or false true

balance stability

Repeat sampling until equal numbers of stable and unsta-
ble models are available. Useful for the creation of balanced
training data for machine learning (see section 7.4 for de-
tails).

true or false false

return all eigvals

Return all eigenvalues of each Jacobian matrix. If false,
only the eigenvalues with largest real part (which is sufficient
to determine stability) are computed in each iteration, using
the command eigs(J, 1, ’lr’). For large matrices, this
requires less runtime (see section 7.5 for details). If true,
the full set of eigenvalues are computed using eig(J).

true or false true

Table 4: Fields in the options-struct (optional input argument for the skm-function).

8

fieldname description Sampling interval

Enzyme Substrates

Boolean matrix indicating positions of enzyme substrates.
In reversible reactions (indicated by options.kinetics =
‘enzymatic rev’), substrate parameters will have antagonistic ef-
fects on the forward- and backward reaction.

[0, 1]

Enzyme Products

Boolean matrix indicating positions of enzyme products. In re-
versible reactions, product parameters will have antagonistic effects
on the forward- and backward reaction.

[−1, 0]

Constant Params

Numerical matrix indicating positions and values of constant pa-
rameters (e.g. parameters describing mass-action kinetics have a
fixed value of 1)

no sampling intervals,
parameters fixed to user-
defined values

Regulators

Numerical matrix indicating positions and interval boundaries of
regulators (define negative boundaries for inhibitors and positive
boundaries for activators) In reversible reactions, regulatory param-
eters influence forward- and backward reaction in the same manner.

user-defined

FurtherParams lower,
FurtherParams upper

Numerical matrices indicating upper and lower interval boundaries
of parameters describing arbitrary effects. In case of reversible re-
actions, parameters will only be affect the direction for which they
are specified and not included into the opposite direction. Can be
used for example to model transport reactions involving different
compartments.

user-defined

Table 5: Fields in the paramIntervals-struct (optional input argument for the skm-function).

6.2 Automatic creation of a paramIntervals-struct

The automatic detection of model parameters and their sampling intervals is the most complex part of
the algorithm. Since the assignment of model parameters by hand is a time-intensive and error-prone
process, we offer an automated procedure that derives parameter positions directly from the network
structure.

This is achieved by the function skm createParamStruct, which derives the positions of substrates
and products from the stoichiometric matrix N, translates them into model parameters and returns a struct
which can be used as a paramIntervals-argument for the skm-function. This resulting paramIntervals-
struct can then be further modified by the user, for example by adding regulatory interaction or param-
eters which are fixed to constant values.

The following code demonstrates how to create a paramIntervals-struct using this function:

paramIntervals = skm_createParamStruct(N, kinetics)

For the automatic assignment of sampling intervals by the function skm createParamStruct, we need
to specify the type of reactions involved in the network. This is given by the input argument kinetics.
If this argument is left out, irreversible enzymatic reactions will be assumed by default. Currently, three
types of reactions can be specified:

1. Irreversible enzyme reactions (kinetics=‘enzymatic irrev’): each substrate (indicated by
negative entries in N) leads to a parameter sampled from interval [0, 1]. Products are ignored. If used
in skm createParamStruct, the field Enzyme Substrates of the resulting paramIntervals-object
contains a 1 for each substrate. All other matrices contain only 0s.

2. Mass action kinetics (kinetics=‘massAction’): each substrate (indicated by negative entries
in N) leads to fixed parameter of 1. Products are ignored. If used in skm createParamStruct, the
field Constant Params of the resulting paramIntervals-object contains a 1 for each substrate. All
other matrices contain only 0s.

3. Reversible enzyme reactions (kinetics=‘enzymatic rev’): This mode requires the reactions
to be split into a forward and backward part. Each substrate (indicated by negative entries for
the forward reactions in N) leads to a parameter sampled from [0, 1]. Each product (indicated by

9

positive entries for the forward reactions in N) leads to a parameter sampled from [−1, 0]. If used
in skm createParamStruct, the field Enzyme Substrates of the resulting paramIntervals-object
contains a 1 for each substrate.The field Enzyme Products contains a 1 for each product. All other
matrices contain only 0s. Since each substrate-parameter θS describes positive influence on the
forward reaction rate, it also implies a negative influence on the backwards reaction rate. The
skm-routine will therefore assign the parameter to two positions in the parameter matrix T: the
positive value θS for the forward reaction, and the negative value θS − 1 for the backward reaction.
Product parameters are handled in a similar manner (see Grimbs et al (2007) for details).

6.3 When do I need to specify a paramIntervals-input argument?

If no modifications of the struct are planned by the user and the automatically derived parameters
are sufficient, there is no need to generate a paramIntervals-struct before starting the analysis. If
not provided as an optional input argument, the skm-function will automatically create such an object
internally. In doing so, it will use the reaction type which is specified in options.kinetics and apply
the above mentioned rules.

6.4 What if I only want to specify some parameters while the rest should be
derived automatically?

Often it is sufficient to just modify some specific parameters while the rest can be derived automatically
based on the entries in N. Examples comprise the insertion of regulatory interactions into the Regulators
field or of a constant parameter into the field Constant Params. There are two ways to handle this:

1. Create a paramIntervals-struct using the function skm_createParamStruct. Modify the necessary
matrices and submit to the function skm.

2. Manually create a paramIntervals-struct that contains only those matrices necessary to describe
the desired parameters. For example, for regulatory parameters it is enough to specify the field
paramIntervals.Regulators. All other fields will be automatically created and filled with model
parameters during runtime.

6.5 Example

The stoichiometric matrix of the simplified glycolysis model of Steuer et al (2006) has already been
described in Section 5.2. Assuming irreversible enzyme-catalyzed reactions, the command

param_intervals = skm_createParamStruct(N, ‘enzymatic_irrev’)

returns a struct in which the positions of the enzymes’ substrates are specified in the field Enzyme Substrates:

param intervals.Enzyme Substrates =



0 0 0 0 1 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 1 0

0 0 1 0 0 0 0 1

0 0 0 1 0 1 0 0

0 0 0 1 0 0 0 0

0 1 0 0 0 1 0 0

0 0 0 0 1 0 0 0



(2)

Starting the skm function with this struct as an input argument results in ∼ 53% stable models (see
Section 5.2). We can investigate the effects of additional interactions that take place in the network by
manually manipulating the remaining fields in the struct.

So far, all other fields except Enzyme Substrates are still empty. However, we can include product
feedback effects in the field Enzyme Products. We want to assign a product parameter for each positive
entry in N:

10

param_intervals.Enzyme_Products = N’>0

This command produces a matrix which indicates the positions of all parameters describing product
inhibition:

param intervals.Enzyme Products =



1 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0

0 0 1 0 0 1 0 0

0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



(3)

These parameters will be sampled from the interval [−1, 0] during the Monte-Carlo simulation. Using
these settings, the number of stable models produced in the Monte-Carlo simulation rises to ∼ 95%!

Furthermore, we can add an additional regulatory parameter for feedback inhibition of FBPase by
ATP:

param_intervals.Regulators(1, 5) = -2

The Regulators field now contains the lower boundary of the sampling intervals (−2) for this param-
eter:

param intervals.Regulators =



0 0 0 0 −2 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



(4)

This regulatory parameter decreases the number of stable models to ∼ 90%.

6.6 Including allosteric regulators at random positions

An already existing paramIntervals-struct can be extended to include regulatory parameters at random
network positions. This is done by the function skm assignRandomRegulators . It returns a matrix that
can be assigned to the Regulators-field of the struct. If some regulatory interactions have already been
assigned manually, the newly created matrix can be added to the existing entry in the Regulators-field.

11

7 Working with the results

7.1 Plotting the results

In order to illustrate the results of the Monte-Carlo experiments graphically, the toolbox function
skm plotParams creates plots which show the distributions of the model parameters and of the resulting
eigenvalues for stable and unstable models. When options.plot = TRUE (the default), the skm-function
invokes this function automatically after finishing Monte-Carlo sampling. A detailed documentation of
the function is provided in Appendix Section A.2.7.

7.2 Pairwise comparison of the parameters

The function skm pairwiseTests compares the model parameters responsible for stable and unstable
models by the Kolmogorov-Smirnov test. The syntax looks as follows:

[p_values_sorted, names_sorted] = skm_pairwiseTests(modelParam_values, stability, modelParam_names)

A detailed documentation of this function is provided in Appendix Section A.2.6.

7.3 Example

As described in section 5.2, analysing the glycolysis model of Steuer et al (2006) using default settings
for the skm-function results in ∼ 53% stable models. The corresponding eigenvalue and parameter
distributions are shown in Figure 1.

Pairwise comparison of the model parameters yields the following results:

p values sorted names sorted



0

0

4.93 · 10−44

1.62 · 10−43

9.50 · 10−32

2.79 · 10−13

0.0275

0.3066

0.4726

0.6335

0.6826

0.9321



{′v1− S5− Substrate′

′v8− S5− Substrate′

v6− S4− Substrate′

v5− S4− Substrate′

v3− S2− Substrate′

v7− S2− Substrate′

v3− S7− Substrate′

v7− S6− Substrate′

v2− S1− Substrate′

v5− S6− Substrate′

v4− S3− Substrate′

v4− S8− Substrate′}

Thus, the first six parameters exhibit significant influence on stability (significance threshold α =
0.01). The parameters associated with reaction v1 and metabolite S5 (FBPase-ATP), as well as with
v8 and S5 (ATPase-ATP) show the smallest p-values. The strong impact of these two parameters on
stability can also be observed in Figure 1a), where they show the most striking differences between stable
and unstable models.

7.4 Creating training data for the C4.5 or C5.0 algorithm for decision trees

The information about which model parameters lead to stable and unstable models can be used for
classifier training. In doing so, the function skm createClassifierInput enables the creation of training
data files for the decision tree algorithms C4.5 (Quinlan, 1993). Optionally, input for the proprietory
C5.0 algorithm (Quinlan, 2012) can be created instead. A detailed documentation of the function is
provided in Appendix Section A.2.3.

To avoid bias, we recommend to use a balanced dataset with equal numbers or stable and unstable
models for classifier training. This can be obtained by setting options.balance stability = TRUE

before starting the skm-function.

12

(a)

(b)

Figure 1: Graphical output produced by toolbox function skm plotParams. (a): Boxplots of the model
parameters resulting in stable and unstable models (b): Histograms of the corresponding eigenvalue
distributions.

13

7.5 Obtaining further information from the eigenvalues

When evaluating the Jacobian matrix of a metabolic system in a steady state, the eigenvalue with largest
real part indicates whether the steady state is stable. The remaining eigenvalues, however, can provide
additional information. For example, the script ExampleScript Steuer2006 CalvinCycle demonstrates
how the two eigenvalues with largest real parts can be used to detect Hopf bifurcations.

By default, the toolbox applies the eig function for eigenvalue computation. However, for large
systems, computation of the full set of eigenvalues using the eig function can be very runtime-intensive.
We therefore offer the option options.return all eigvals = false, which activates usage of the eigs

function for obtaining only the eigenvalue with maximum real part. We recommend using this option
whenever (1) the system is large, and (2) stability is the only target variable of the analysis.

In order to obtain a quantitative threshold for when to chose this setting, we performed a simulation
study, the results of which are shown in Figure 2a). It revealed that in contrast to the eig function,
which is clearly dependent on the matrix size, the eigs function keeps relatively constant runtime for
increasing matrix sizes. A closer look (Fig. 2b) reveals that this leads to a better runtime in systems
with 76 metabolites ore more.

(a)

(b)

Figure 2

14

A Function documentation in detail

This section provides detailed documentation of all toolbox functions which can be directly invoked by
the user. A graphical overview of the toolbox pipeline and the roles of the different functions is given in
Figure 3.

Figure 3: Scheme of the overall structure of the toolbox and the roles of its individual functions. Toolbox
functions are shown in blue; input and output arguments are shown in orange (MATLAB matrices) or
red (MATLAB structs). Optional input arguments for a function a written in italics and indicated by
dotted arrows.

15

In the following documentation, mandatory input arguments are marked by ∗.

A.1 Analysis functions

Analysis functions are the main functions for creating and analyzing SK-models via Monte-Carlo simu-
lation.

A.1.1 skm

The main function of the SKM-toolbox. Creates SK-models, performs Monte-Carlo simulations and plots
the resulting distributions of eigenvalues and model parameters. Detailed explanations of its use together
with an example are provided in Section 5.

[eigenvalues, stability, modelParam_values, modelParam_names, used_options, used_paramIntervals] = ...

skm(N, S0, v0, numModels, options, paramIntervals)

Function subFct reduce T

Input arguments:

N∗ Stoichiometric matrix with m rows and r columns. Format: matrix.

S0∗ Row or column vector of m steady state concentrations.

v0∗ Row or column vector of r steady state fluxes.

numModels Number of SK-models created during Monte-Carlo sampling (optional argument, de-
fault value: 104). Format: integer.

options Settings for the skm-routine. See Section 6.1 for details (optional argument, default
values are listed in Table 4). Format: struct.

paramIntervals A struct with information about the model parameters and their sampling in-
tervals. See Section 6.1 for details. It gives the positions of substrate pa-
rameters (Enzyme Substrates) sampled from interval [0, 1], product parameters
(Enzyme Products) sampled from interval [−1, 0], as well as parameters describing
regulatory effects (Regulators) or further influences (FurtherParams), both sam-
pled from user-defined intervals. If not specified, default settings are assigned inter-
nally using the function skm createParamStruct for the kinetic rate law specified in
options.kinetics.

Output arguments:

eigenvalues A matrix containing the eigenvalues (stored row-wise) of the Jacobian of each SK-
model created during Monte-Carlo simulation.

stability Indicator of stability of each SK-model. An SK-model is stable if the largest real part
of the eigenvalues is negative. Stability = 1, instability = 0. Models for the maximum
real part equals zero are indicated by nan. Format: column vector.

modelParam values A struct of model parameter values which have been randomly sampled
in each Monte-Carlo iteration. Contains the values of substrate parameters
(Enzyme Substrates), product parameters (Enzyme Products), as well as parameters
describing regulatory effects (Regulators) or further influences (FurtherParams).

modelParam names A struct with the names of all model parameters which have been randomly sam-
pled in each Monte-Carlo iteration. Contains the names of substrate parameters
(Enzyme Substrates), product parameters (Enzyme Products), as well as parameters
describing regulatory effects (Regulators) or further influences (FurtherParams).
Each field consists of a cell array which denotes the affected reaction (column 1) and
metabolite (column 2), as well as the role of the parameter in the model (column 3).

used options A struct with the settings that have actually been applied by the algorithm. Its
fields correspond to those of the options input argument.

used paramIntervals A struct with the parameter sampling intervals that have actually been used in the
algorithm.Its fields correspond to those of the paramIntervals input argument.

16

A.2 Information and editing functions

Information and editing functions are functions that help generating input arguments for the analysis
functions and to retrieve and process results.

A.2.1 skm assignRandomRegulators

Creates a matrix with regulatory parameters at random network positions that can be assigned to the
Regulators-field of a paramInterval-struct (see Section 6.6 for details).

[RegulatorMatrix, positions, values] = ...

skm_assignRandomRegulators(networkDimensions, intervalLimits, kinetics)

Function skm assignRandomRegulators

Input arguments:

networkDimensions∗ Vector [m, r] where m is the number of metabolites and r is the number of
reactions in the network.

intervalLimits∗ Vector with positive / negative entries specifying the boundaries for activating
or inhibiting regulatory parameters.

kinetics Type of enzyme kinetic rate law assumed for each reaction. Possible val-
ues: ‘enzymatic irrev’, ‘enzymatic rev’, ‘massAction’ (see Section 6.2
for details). This is an optional argument. If not specified, default value
‘enzymatic irrev’ is used.

Output arguments:

RegulatorMatrix Matrix indicating the positions and sampling interval boundaries of regula-
tory parameters. It can be assigned to the Regulators-field of an existing
paramIntervals-struct.

positions Row and column coordinates of all randomly added regulatory parameters.
Format: matrix with two columns (1st column: row indices, 2nd column: col-
umn indices).

values Interval boundaries of all randomly added regulatory parameters. Format:
vector.

A.2.2 skm countStableModels

Quantitative evaluation of the number of stable and unstable models. Computes absolute numbers and
percentages. Returns estimates and standard deviations.

[stable_percent_mean, stable_percent_sd, stable_models_mean, stable_models_sd] = ...

skm_countStableModels(stability)

Function skm countStableModels

Input arguments:

stability∗ Indicator of stability of each SK-model. Stable models are indicated by
entry 1, unstable models by 0. Models for which the stability could not
be derived in this manner (i.e. the maximum real part equals zero) are
indicated by nan. Format: column vector.

Output arguments:

stable percent mean Average percentage proportion of stable models.

stable percent sd Standard deviation of the percentage proportion of stable models.

stable models mean Average absolute number of stable models.

stable models sd Standard deviation of the absolute number of stable models.

17

A.2.3 skm createClassifierInput

Create training data for the C4.5 classifier for decision trees. Optionally, input for the proprietory C5.0

classifier can be created instead of C4.5. This function creates a .names and .data file. Optionally, a
.test file with separate test data can be created as well.

skm_createClassifierInput(paramValues_train, labels_train, modelParam_names, filename, ...

classifier, classNames, paramValues_test, labels_test)

Function skm createClassifierInput

Input arguments:

paramValues train∗ Model parameter values which should be used as training data.
Format: struct with same field names as skm-function output
modelParam_values.

labels train∗ Class labels (i.e. indicators of stability) for the training data.

modelParam names∗ Names of the model parameters in the training and test data. Format:
struct with same field names as skm-function output modelParam_names.

filename∗ Path for storing the resulting files on disc.

classifier Decision tree algorithm to be applied. Possible values: ‘C4.5’ , ‘C5.0’.
Default: ‘C4.5’.

classNames Names of the classes. Format: cell. Default: {’UNSTABLE’,’STABLE’}

paramValues test Optional model parameter values for the creation of test data.
Format: struct with same field names as skm-function output
modelParam_values.

labels test Class labels (i.e. indicators of stability) for the optional test data.

Output arguments:

-

A.2.4 skm createOptionsStruct

Assistant function creating a template struct that contains all default settings for the toolbox. This
struct then serves as an input argument for the skm - function. Settings can be adapted by the user by
manually modifying the corresponding fields in the struct.

options = skm_createOptionsStruct()

Function skm createOptionsStruct

Input arguments:

-

Output arguments:

options Default settings for the skm-routine (see Table 4 for a comprehensive list of all
entries). Format: struct.

18

A.2.5 skm createParamStruct

Assistant function creating a template struct that defines network positions and sampling intervals of the
model parameters. This struct then serves as an input argument for the skm - function. Parameters can
adapted by the user by manually modifying the corresponding fields in the struct.

paramIntervals = skm_createParamStruct(N, kinetics)

Function skm createParamStruct

Input arguments:

N∗ Stoichiometric matrix with m rows and r columns.

kinetics Type of enzyme kinetic rate law assumed for each reaction. Possible val-
ues: ‘enzymatic irrev’, ‘enzymatic rev’, ‘massAction’ (see Section 6.2
for details). This is an optional argument. If not specified, default value
‘enzymatic irrev’ is used.

Output arguments:

paramIntervals Suggestions for positions and sampling intervals of the model parameters (see
Section 6.1 for details). Format: struct.

A.2.6 skm pairwiseTests

Pairwise comparison between the model parameters responsible for stable and unstable models. Uses the
Kolmogorov-Smirnov test.

[p_values_sorted, names_sorted] = skm_pairwiseTests(modelParam_values, stability, modelParam_names)

Function skm pairwiseTests

Input arguments:

modelParam values∗ Model parameter values which have been randomly sampled in each Monte-
Carlo iteration. Format: struct. It gives the values of substrate parame-
ters (Enzyme Substrates), product parameters (Enzyme Products), as well
as parameters describing regulatory effects (Regulators) or further influences
(FurtherParams).

stability∗ Indicator of stability of each SK-model. Stable models are indicated by entry
1, unstable models by 0. Models for which the stability could not be derived
in this manner (i.e. the maximum real part equals zero) are indicated by nan.
Format: column vector.

modelParam names∗ Names of all model parameters which have been randomly sampled in each
Monte-Carlo iteration. Format: struct. It gives the names of substrate param-
eters (Enzyme Substrates), product parameters (Enzyme Products), as well
as parameters describing regulatory effects (Regulators) or further influences
(FurtherParams). Each field consists of a cell array which denotes the reaction
(column 1) and metabolite (column 2) associated with each parameter, as well
as its role in the model (column 3).

Output arguments:

p_values_sorted p-values for the individual model parameters sorted in ascending order. Format:
vector.

names_sorted The corresponding model parameters sorted in the same order as the p-values.
Format: cell array.

19

A.2.7 skm plotParams

Plotting the distributions of model parameters and resulting eigenvalues for stable and unstable models.

figure_handles = skm_plotParams(modelParam_values, eigenvalues, stability, modelParam_names)

Function skm plotParams

Input arguments:

modelParam values∗ Model parameter values which have been randomly sampled in each Monte-
Carlo iteration. Format: struct. It gives the values of substrate parame-
ters (Enzyme Substrates), product parameters (Enzyme Products), as well
as parameters describing regulatory effects (Regulators) or further influences
(FurtherParams).

eigenvalues∗ Eigenvalues of the Jacobian matrix of each SK-model created during Monte-
Carlo simulation. Format: matrix, eigenvalues are stored row-wise.

stability ∗ Indicator of stability of each SK-model. Stable models are indicated by entry
1, unstable models by 0. Models for which the stability could not be derived
in this manner (i.e. the maximum real part equals zero) are indicated by nan.
Format: column vector.

modelParam names∗ Names of all model parameters which have been randomly sampled in each
Monte-Carlo iteration. Format: struct. It gives the names of substrate param-
eters (Enzyme Substrates), product parameters (Enzyme Products), as well
as parameters describing regulatory effects (Regulators) or further influences
(FurtherParams). Each field consists of a cell array which denotes the reaction
(column 1) and metabolite (column 2) associated with each parameter, as well
as its role in the model (column 3).

Output arguments:

figure handles Handles of all figures created by the function. Format: vector.

A.2.8 skm readSBML

This function enables the extraction of metabolites, reactions, and stoichiometric matrix from an SBML
file for use in the SKM toolbox. It uses the TranslateSBML function of the LibSBML package (Bornstein
et al , 2008). This Package can be downloaded under http://sbml.org/Software/libSBML. When installing
LibSBML, make sure that you include its MATLAB API.

[m_names, r_names, N] = skm_readSBML(SBML_file)

Function skm readSBML

Input arguments:

SBML file∗ Name of SBML file.

Output arguments:

m names Cell array with metabolite names.

r names Cell array with reaction names.

N Stoichiometric matrix.

20

References

Bornstein BJ, Keating SM, Jouraku A, Hucka M (2008) LibSBML: An API library for SBML. Bioinfor-
matics 24: 880–881

Girbig D, Grimbs S, Selbig J (2012a) Systematic Analysis of Stability Patterns in Plant Primary
Metabolism. PLoS ONE 7: e34686

Girbig D, Selbig J, Grimbs S (2012b) A matlab toolbox for structural kinetic modeling. submitted

Grimbs S, Selbig J, Bulik S, Holzhütter H, Steuer R (2007) The stability and robustness of metabolic
states: identifying stabilizing sites in metabolic networks. Molecular Systems Biology 3: 146

Quinlan JR (1993) C4.5: programs for machine learning . Morgan Kaufmann Series in Machine Learning.
Morgan Kaufmann, revised edition

Quinlan JR (2012) Data Mining Tools See5 and C5.0 . Last accessed 2012 Mar 10

Schmidt H, Jirstrand M (2006) Systems Biology Toolbox for MATLAB: A computational platform for
research in systems biology. Bioinformatics 22: 514–515

Steuer R (2011) Exploring the Dynamics of Large-Scale Biochemical Networks: A Computational Per-
spective. The Open Bioinformatics Journal 5: 4–15

Steuer R, Gross T, Selbig J, Blasius B (2006) Structural kinetic modeling of metabolic networks. Pro-
ceedings of the National Academy of Sciences of the United States of America 103: 11868–11873

21

